Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States.
نویسندگان
چکیده
Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.
منابع مشابه
Multilocus simple sequence repeat markers for differentiating strains and evaluating genetic diversity of Xylella fastidiosa.
A genome-wide search was performed to identify simple sequence repeat (SSR) loci among the available sequence databases from four strains of Xylella fastidiosa (strains causing Pierce's disease, citrus variegated chlorosis, almond leaf scorch, and oleander leaf scorch). Thirty-four SSR loci were selected for SSR primer design and were validated in PCR experiments. These multilocus SSR primers, ...
متن کاملThe Complex Biogeography of the Plant Pathogen Xylella fastidiosa: Genetic Evidence of Introductions and Subspecific Introgression in Central America
The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detec...
متن کاملA GENOME-WIDE APPROACH TO PLANT-HOST PATHOGENICITY IN XYLELLA FASTIDIOSA: MULTIGENIC METHODS FOR IDENTIFYING STRAINS, FOR STUDYING THE ROLE OF INTER-STRAIN RECOMBINATION, AND FOR IDENTIFYING PATHOGENICITY CANDIDATE GENES Project Leader:
We have developed a multilocus sequence typing (MLST) system for identifying the known pathovars of Xylella fastidiosa (including subsp. fastidiosa that causes Pierce’s disease). This identification system is based on allelic variation at seven housekeeping genes (holC, nuoL, leuA, gltT, cysG, petC and lacF) and a public MLST database has been established at www.mlst.net (see Scally et al. 2005...
متن کاملGenome Sequence of a Xylella fastidiosa Strain Causing Sycamore Leaf Scorch Disease in Virginia
Xylella fastidiosa causes bacterial leaf scorch in landscape trees including sycamore. We determined the draft genome of X. fastidiosa strain Sy-Va, isolated in Virginia from a sycamore tree displaying leaf scorch symptoms. The Sy-VA genome contains 2,477,829 bp, and has a G+C content of 51.64 mol%.
متن کاملLeaf scorch symptoms are not correlated with bacterial populations during Pierce's disease.
Xylella fastidiosa (Xf) is a xylem-limited bacterium that lives as a harmless endophyte in most plant species but is pathogenic in several agriculturally important crops such as coffee, citrus, and grapevine (Vitis vinifera L.). In susceptible cultivars of grapevine, Xf infection results in leaf scorch, premature leaf senescence, and eventually vine death; a suite of symptoms collectively refer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytopathology
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2010